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Many systems in chemistry, biology, finance, and social sciences
present emerging features that are not easy to guess from the
elementary interactions of their microscopic individual compo-
nents. In the past, the macroscopic behavior of such systems was
modeled by assuming that the collective dynamics of microscopic
components can be effectively described collectively by equations
acting on spatially continuous density distributions. It turns out
that, to the contrary, taking into account the actual individualy
discrete character of the microscopic components of these systems
is crucial for explaining their macroscopic behavior. In fact, we find
that in conditions in which the continuum approach would predict
the extinction of all of the population (respectively the vanishing
of the invested capital or the concentration of a chemical sub-
stance, etc.), the microscopic granularity insures the emergence of
macroscopic localized subpopulations with collective adaptive
properties that allow their survival and development. In particular
it is found that in two dimensions ‘‘life’’ (the localized proliferating
phase) always prevails.

In addition to physics, an increasing range of sciences (chem-
istry, biology, ecology, finance, urban and social planning)

have moved in the last century to quantitative mathematical
methods.

Along with the obvious benefits, it turns out that the tradi-
tional differential equations approach has brought some fallacy
into the study of such sciences.

We present here a very simple generic model that contains
proliferating (and dying) individuals, and we show that in reality
it behaves very differently than its representation in terms of
continuum density distributions. In conditions in which the
continuum equations predict the population extinction, the
individuals self-organize in spatio-temporally localized adaptive
patches, which ensure their survival and development.

This phenomenon admits multiple interpretations in various
fields:

If the individuals are interpreted as interacting molecules, the
resulting chemical system emerges spatial patches of high density
that evolve adaptively in a way similar with the first self-
sustaining systems that might have anticipated living cells.

If the individuals are the carriers of specific genotypes rep-
resented in the genetic space, the patches can be identified with
species, which rather than becoming extinct, evolve between
various genomes (locations in the genetic space) by abandoning
regions of low viability in favor of more viable regions. This
adaptive speciation behavior emerges despite the total random-
ness we assume for the individuals motions in the genetic space
(mutations).

Interpreted as financial traders, the individuals develop a
‘‘herding’’ behavior despite the fact that we do not introduce
communication or interaction between them. The model leads to
the flourishing of markets, which the continuum analysis would
doom to extinction.

All these phenomena have in common the emergence of large,
macroscopic structures from apparently uniform background (1)
caused by the amplification of small, microscopic fluctuations
that originate in the individualized character of the elementary
components of the system. This mechanism insures in particular

that on large enough two-dimensional surfaces, even if the
average growth rate is negative (because of very large death
rate), adaptive structures always emerge and flourish.

Imagine an area inhabited by a population of eternal agents A,
which are spread out uniformly with average density nA and
move around randomly, with diffusion coefficient DA. Imagine
now a race of mortals, B, which also are spread over this area,
with initial uniform density nB(0). The B agents die at a constant
rate, m, (B3

m ) and proliferate (divide) when they meet the
‘‘catalyst,’’ A, with rate l (B 1 A3

l B 1 B 1 A). The Bs are
diffusive, hopping at the rate DB. What will happen?

The naive lore based on macroscopic continuity assumptions
will predict that A reaches a spatially homogeneous distribution,
nA(x) 5 nA, while the B time variation nByt is represented by
the linear differential partial differential equation:

nB

t
5 DB¹2nB 1 ~lnA 2 m!nB . [1]

The first term represents the uniformization effect of B diffusion
while the mB term represents the fact that a certain fraction of
Bs die per unit time. The crucial term lnAnB represents the
proliferation of Bs in the presence of the ‘‘life giving’’ As. Note
that the equation is linear in nB and that for initial spatially
uniform nA and nB distributions it has the time exponential
solution

nB~t! 5 nB~0!et~lnA 2 m!. [2]

In particular, Eq. 2 predicts that if the macroscopic proliferation
rate lnA is lower than the death rate m, the B population will
uniformly decrease to extinction.

Using microscopic representation techniques (2), one finds
that populations of discrete proliferating agents are much more
resilient than one would first guess based on macroscopic or
continuum (partial differential equations) treatment (Fig. 1).

The study of diffusion limited reactions (3) already has shown
in the past deviations from the continuum theory because of the
quantized nature of the reactants. In the present case the effect
is even more dramatic. It constitutes the difference between life
and death. The continuum approach predicts extinction whereas
the direct simulation uncovers the emergence of a thriving,
adaptive, developing system (Fig. 1). These simulations were
carried out in both synchronous and asynchronous algorithm
with no apparent effect on the results (4).

To understand the ‘‘source of life’’ in this system one has to
concentrate on the microscopic conditions around the individual
A agents, rather then looking at the local average growth rate
lnA 2 m.

Fig. 2 represents the evolution of the B cloud following a single
A agent as it jumps around randomly. The B concentration is
shown to trace the A as it performs a random walk. Clearly, the
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colony does not decay to extinction; instead, it seems to trace the
A, ‘‘trying’’ to keep its center of mass at its location. As shown
in Fig. 2 Inset, each jump of the A is followed by a momentary
decrease in the height of the B concentration; however, because
of the multiplicative process there is an overall increase.

Let us consider first the simplest situation of a single A agent
jumping randomly (with a diffusion coefficient DA) between the
locations in an infinite d-dimensional space. In between A jumps
the B density at the A location grows exponentially (5, 6) as
nB(t) ' nB(0)e(l2m22dDB)t. Where l, m, and 2dDB stand for the
proliferation, death, and the loss caused by diffusion, respec-
tively. The estimation is made by neglecting the flow of Bs from
a neighboring site to the A site. This approximation is justified
when the B concentration in the neighboring sites is much lower
than on the A site. In the same limit, the ratio between the height
of the B density at the A location and the height of the B density
on a neighboring site is easily estimated: lyDB. Consequently,
each A jump corresponds to a sudden downward jump by a factor

of lyDB in the height of the B hill. As there are on average 2dDA

such jumps per unit time, the net effect of proliferation, diffu-
sion, and death gives the B concentration at the A site as a
function of time:

nB~t! 5 nB~0!e~l 2 m 2 2dDB 2 2dDALoge~lyDB!!t . [3]

The approximation is in good agreement with the simulation
shown in Fig. 2. The slope of the island, on a log scale, is indeed
seen to be Loge(lyDB). The time dependence of the height of the
B island in between A jumps is indeed given approximately by an
exponent (l 2 m 2 2dDB)t. Consequently the dashed red line
(Fig. 2 Inset), which represents Eq. 3, follows closely the actual
growth seen in the simulation (blue line). The difference be-
tween the theory and simulation is mainly caused by cases where
two or more A jumps follow each other rapidly, in this case the
island’s shape does not stabilize before another A jump is made,
these rather rare events, modify somewhat the actual result. This
analysis turns void if DB 5 0, where the spatial dimensions of the
island do not grow at all. We do not consider this singular case
in this paper.

One may ask what is the situation in the case when single
colonies are unstable (i.e., where the exponent in Eq. 3 is
negative). One possibility is that in such a situation the contin-
uum approximation is valid and the B concentration decays to
zero. Another possibility is that, although single isolated colonies
are unstable, global effects such as islands growing, joining, and
splitting give us back the survival feature. In particular, because
large colonies are more stable than small colonies, one may
expect the typical size of an ‘‘active’’ colony to grow with time.
This behavior is demonstrated in Fig. 3, which shows the active

Fig. 1. (Lower) Shown is the exponential growth of the average B population
as a function of time, in the actual simulation (solid blue line) compared with
the exponential decrease predicted by the continuum approximation (dashed
red line). ,A. is the average number of A reactants per site. Other symbols are
defined in the text. (Upper) The snapshots show the spatial configuration of
A and B reactants. B reactants are seen to be localized in islands (notice that
what is plotted is the logarithm of B concentrations, thus localization is
stronger than first would appear).

Fig. 2. The profile of a B island as a function of time as it follows the random
motion of an A agent. The cross-section of the island is taken through the
current location of the A agent. (Inset) The time evolution of the height of the
B concentration at the point at which A currently is located (solid blue line).
The B colony is seen to grow, although the average growth rate over the entire
space is negative (nA is extremely low because there is only one in the whole
simulation space, thus lnA 2 m ' 2m). The dashed red line shows the expo-
nential growth with coefficient «0 2 2dDAk, where k 5 Loge(lyDB) is the slope
of the island (this slope is exhibited in the main graph and can be derived from
a simple approximate calculation). «0 is l 2 m 2 2dDB derived similarly.

Fig. 3. The spatial distribution of Bs for different times (earlier times to the
left), where concentrations greater than 10 are colored red and concentra-
tions below 10 are color coded.

Fig. 4. (Lower) Flow lines for d . 2. Shaded region flows to negative mass
(‘‘life’’). (Upper) Flow lines for d # 2. The whole parameter space flows to
negative mass.
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clusters in a two-dimensional system developing in time. Evi-
dently, the small clusters either decay or merge into larger and
larger clusters.

In many natural situations, the proliferation of some entity
takes place under the influence of a discrete catalyst. Assuming
that our model captures the dynamic of such living systems
correctly, the conclusion may be that individual-based life is
much more resilient than a hypothetical life density spread
continuously across spatial regions.

These conclusions should suffice to induce professionals in
biology (7, 8) and in finance and social sciences (9) to consider
seriously the regime in which their systems are naively nonviable
(decay to extinction) when viewed macroscopically but perfectly
viable in reality (and when simulated correctly at the microscopic
individual level; ref. 10).

In particular, most of the species in nature could be in this
regime: negative naive average macroscopic growth rate but
actual survival and proliferation. Similarly, markets that might
look unappealing when averaging over the various investing
possibilities might prove lucrative enough (at least for the lucky
investors that hit profit opportunities A) as to maintain them in
the competitive range. In fact this line of thought might provide
an explanation to the emergence of life from the random
chemistry of its component molecules despite the formal ex-
treme improbability of the event. Equally it might explain the
paradoxes in finance between the efficient market hypothesis
(absence of systematic profit opportunities in equilibrium mar-
kets) and the actual profits that investors extract daily from the
market.

We note that more realistic models that can be studied by
using the methods described in this paper can be constructed.
Such studies could account for the finite carrying capacity of the
environment, as well the consumption of resources and compe-
tition between different species.

To obtain a more rigorous bound on the parameter range in
which life overcomes the gloom prognosis of the macroscopic
analysis we used the renormalization group analysis, which
indicates that on large enough surfaces life always wins. For
higher dimensions, the dominion of life still extends to arbitrary
low nA densities, but a minimal finite l value is required.

In the renormalization group formalism, the collective behav-
ior of the system is identified by integrating out the small length
scale, short time fluctuations, leaving us with an effective theory
for the large-scale objects. Here, these are the large, stable

islands shown in Fig. 3. The new, effective theory is characterized
by renormalized coupling constants, i.e., modified numerical
values of the effective rates (growth rate, dearth rate, hopping,
etc.) on a large length scale. The process of decimating small
f luctuations then is iterated again and again, giving us a flow line
that reflects the evolution of the effective values of the coupling
constants as one integrates larger and larger scales l. The details
of this renormalization group analysis, which involves the pre-
sentation of the exact master equation of the process as a field
integral and the «-expansion around the critical dimension dc 5
2 are out of the scope of this report and will be presented
elsewhere.

Fig. 4 shows the flow lines of m (m 5 m 2 lnA) and l caused
by the iteration of the decimation process. D [ DA 1 DB is the
effective diffusion constant. The flow is given by:

dm
dl

5 2m 2
l2nA

2pD
,

dl

dl
5 lF2 2 d 1

l

2pDG .
[4]

For d # 2 we see that for large length and time scales (that is,
after many iterations of the decimation process), l grows without
limit whereas m eventually becomes negative. This finding
implies that on the large scale, the system actually behaves as if
lnA . m, and life always wins.

In higher dimensions (d . 2) Fig. 4 Upper indicates a dynam-
ical phase transition where for part of the parameter space the
system flows to negative m (life) and for another part the system
flows to positive m (death).

It should be noted that the flow portrayed in Fig. 4 is
associated with larger and larger length scales. For a finite
system, the flows should be truncated and the size of the system
may be crucial. Simulations with parameters identical to that of
Fig. 3 lead to extinction when carried out on a system size four
times smaller.

In conclusion, our results suggest that the dimensionality of
the system and its size are crucial features for its capability to
emerge and sustain life. This may explain the fact that most
ecological systems are two-dimensional. Reinterpreting in the
genome space, the present results provide the conceptual link
between the atomized structure of the life building blocks and
the explosive Darwinian tandem, noise 1 proliferation.
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